
Overview of NoSQL Databases

1. Setting the scene for NoSQL

2. Types of NoSQL databases

Contents

2

 Essential concepts: Relational databases
 Strengths of relational databases
 Limitations of relational databases
 The role of NoSQL databases
 NoSQL databases in the industry

1. Setting the Scene for NoSQL

3

 According to Wiki:

Essential Concepts: Relational Databases

4

A relational database is a digital database
whose organization is based on the
relational model of data, as proposed by E. F.
Codd in 1970.

The relational model organizes data into
one or more tables of columns and rows,
with a unique key identifying each row.

Relationships are a logical connection
between different tables, established on the
basis of interaction among these tables.

Virtually all relational database systems use
SQL as the language for querying and
maintaining the database.

 Extremely well proven and widely used in the industry
• E.g. Oracle, SQL Server, MySQL

 Quality of service guarantees
• Highly efficient, e.g. via indexes, load balancing, etc.
• Highly available, e.g. via replication, fail-over, etc.
• Highly secure
• Transactional

Strengths of Relational Databases

5

 Not good at storing unstructured or heterogeneous data
• This kind of data doesn't fit nicely into the structured world of

rectangular tables and fixed relationships

 Not ideal for ingressing big data at high velocity
• It takes time to break the data down into rectangular chunks, so

that it can be inserted into table(s) in an RDBMS

 Not good for rapidly evolving (agile) requirements
• You can't keep changing the database schema all the time!

 Not ideal for scale-out architectures
• RDBMS aren't really designed for the cloud / commodity storage

Limitations of Relational Databases

6

 NoSQL is a general term to represent non-relational
database management systems
• Encompasses a wide variety of database technologies

 NoSQL databases are designed to address the demands of
building contemporary applications
• Unstructured data
• Handling big data
• Data modelling agility
• Scale-out architecture via auto-sharding, i.e. natively and

automatically spread data across any number of servers

The Role of NoSQL Databases

7

 MongoDB is the top NoSQL database engine in use today
• The following chart shows NoSQL usage stats
• Data is taken from Google Trends, for the period 2012 - 2018

NoSQL Databases in the Industry

8

 Key-value stores
 Document-oriented databases
 Column-oriented stores
 Graph databases

2. Types of NoSQL Databases

9

 Description
• The simplest type of NoSQL database
• Each item in the database is stored as a key/value pair

 Accessing data
• Key lookups, like using a map or dictionary in an OO language

 Examples of key-value stores
• Redis
• Oracle NoSQL Database

Key-Value Stores

10

 Description
• Stores documents of any schema
• Uses encoding formats such as JSON, BSON, YAML, and XML
• Each document has a unique key

 Accessing data
• Access documents by unique keys
• Proprietary APIs to perform CRUD operations

 Examples of document-oriented databases
• MongoDB
• MarkLogic

Document-Oriented Databases

11

 Description
• Stores data on disk by columns
• All cells of a column are stored together on disk, which optimises

many big-data manipulation scenarios

 Accessing data
• Proprietary APIs to perform CRUD operations, e.g. Cassandra has

the Cassandra Query Language (CQL)

 Examples of column-oriented stores
• Apache Cassandra
• HBase

Column-Oriented Stores

12

 Description
• Intended for data whose relations are well represented as a graph
• Common use cases include fraud detection, real-time

recommendation engines, network and IT operations, etc.

 Accessing data
• Graph-bases searches
• APIs available in various standard programming languages such as

Java, C++, Scala, and SPARQL

 Examples of graph databases
• Neo4j
• ArangoDB

Graph Databases

13

14

Any Questions?

Overview of MongoDB

1. Overview of MongoDB

2. Getting started with MongoDB

Annex
 Installing MongoDB

Contents

2

 What is MongoDB?
 Key features of MongoDB
 Hosting vs. local installation
 MongoDB editions

1. Overview of MongoDB

3

 MongoDB is an open-source document database
 In MongoDB, a document is a BSON object ("binary JSON")
 A document contains fieldname/value pairs
 Values can be simple types, arrays, or nested documents

 Here's an example of a MongoDB document:

What is MongoDB?

4

{
 name: "Sam",
 age: 21,
 skills: ["Java", "C++", "JavaScript"],
 additionalInfo: {
 nationality: "UK",
 companyCar: {
 make: 'Bugatti',
 model: 'Chiron'
 }
 }
}

{
 name: "Sam",
 age: 21,
 skills: ["Java", "C++", "JavaScript"],
 additionalInfo: {
 nationality: "UK",
 companyCar: {
 make: 'Bugatti',
 model: 'Chiron'
 }
 }
}

 High performance
 Via indexes

 Rich query language for CRUD operations
 Data aggregation
 Text search and geospatial queries

 High availability
 Via automatic failover and data redundancy

 Horizontal scalability across a cluster
 Via sharding

Key Features of MongoDB

5

 You can get access to a MongoDB instance in the cloud,
install your own in the cloud or install locally

 Hosting MongoDB in the cloud…
 MongoDB Atlas is a cloud-hosted service
 Allows you to provision, run, monitor and maintain MongoDB
 Fast, free, and an easy way to get started with MongoDB
 For details, see https://www.mongodb.com/cloud

 Installing MongoDB on-premise…
 Some organizations prefer to install MongoDB on their own servers
 E.g. for historical or governance reasons
 Many platforms supported, including Unix, Mac, Windows, etc.
 For details, see https://docs.mongodb.com/manual/installation/

Hosting vs. Local Installation

6

 MongoDB Community Edition
 Free, standalone NoSQL database engine
 We'll use this

 MongoDB Enterprise Edition
 Monthly or annual fee, per server
 Advanced security features, integration options, production

support

MongoDB Editions

7

 One of the core advantages of MongoDB (and many
NoSQL databases) is that Horizontal Scaling is a
fundamental assumption

 Vertical Scaling involves increasing the capacity of a
single server, such as using a more powerful CPU, adding
more RAM, or increasing the amount of storage space.

 Horizontal Scaling involves dividing the system dataset
and load over multiple servers, adding additional servers
to increase capacity as required.

 The overall speed or capacity of a single machine may not
be high. If each machine handles a subset of the overall
workload, potentially providing better efficiency than a
single high-speed high-capacity server.

Horizontal Vs Vertical Scaling

8

MongoDB Scaling - Sharding

9

 shard: Each shard contains a subset of the overall data.
 mongos: The mongos appear to the client as a database,

but in fact acts as a query router, ensuring a query goes to
the correct shard or shards.

 config servers: Config servers store metadata and
configuration settings for the cluster.

MongoDB - Sharding

10

 Effectively, MongoDB distributes the read and write
workload across the shards in a sharded cluster

 Both read AND write workloads can be scaled horizontally
across the cluster by adding more shards

https://docs.mongodb.com/manual/sharding/

MongoDB – Sharding Vs Replication

11

 Sharding is the MongoDB solution for Scalability

 ReplicaSets is the MongoDB solution for Fault
Tolerance

 What happens if the computer that one shard is on has a
power supply failure?

 With ReplicaSets each shard is automatically duplicated
across more than one node. If the node fails, then another
node has the same shard data.

https://docs.mongodb.com/manual/replication/

 Downloading and installing MongoDB
 Starting MongoDB from the Command Line
 Starting MongoDB as a Windows Service
 Using the MongoDB interactive shell
 Using MongoDB Compass

2. Getting Started with MongoDB

12

 You can install MongoDB Community Edition for free
 For details, see the Annex at the end of this chapter

 We've already installed MongoDB Community Edition
 See C:\Program Files\MongoDB\Server\3.6

Installing MongoDB For Testing

13

 You can interact with a running MongoDB instance via the
MongoDB interactive shell
 Enables you to enter simple MongoDB CRUD commands

 To start a MongoDB shell:
 Open a new Command Prompt window
 Go to the MongoDB bin folder and run the following command

All being well, you'll see the following message:

Using the MongoDB Interactive Shell

14

mongo

 You can also interact with a running MongoDB instance by
using MongoDB Compass
 This is the official IDE for MongoDB

 Run MongoDB Compass and connect to the MongoDB
instance on localhost, port 27017

Using MongoDB Compass (1 of 2)

15

 MongoDB Compass allows you to explore and manage
data in your MongoDB instance

Using MongoDB Compass (2 of 2)

16

17

Any Questions?

 Downloading MongoDB for Windows
 Installing MongoDB for Windows
 MongoDB installation options

Annex: Installing MongoDB

18

 This section shows how to install MongoDB Community
Edition on Windows…
 Requires Windows Server 2008 R2, Windows Vista, or later

 Go to the download page for MongoDB Community Edition
 https://www.mongodb.com/download-center#community
 Select the Windows 64-bit installation

Downloading MongoDB for Windows

19

1

2

3

4

 When the MongoDB msi has downloaded, run it

Installing MongoDB for Windows

20

 It's possible to install MongoDB as a Windows Service
 MongoDB starts automatically when the machine boots up

 MongoDB requires a data directory to store all data
 You can accept the default location, or specify a different location

MongoDB Installation Options (1 of 3)

21

 You can choose to install MongoDB Compass
 The official IDE for managing MongoDB

 Deselect this option if Compass is already installed, or if
you want to install it later

MongoDB Installation Options (2 of 3)

22

 Proceed to begin the installation

MongoDB Installation Options (3 of 3)

23

Understanding the MongoDB API

1. MongoDB documents and collections

2. CRUD operations

3. Aggregation operations

Contents

2

 Overview
 MongoDB documents
 Field types
 Accessing fields in a document
 MongoDB collections
 Creating a collection

1. MongoDB Documents and Collections

3

 MongoDB provides a simple-to-use API that allows you to
perform CRUD operations on NoSQL data
• Create (insert) documents into a collection
• Read (find) documents in a collection
• Update existing documents in a collection
• Delete exitsing documents in a collection

 The MongoDB API is available in several languages,
including:
• JavaScript (via the MongoDB Shell - see this chapter)
• Python (via PyMongo - see chapter 4)
• C# (via MongoDB NuGet packages - see Chapter 5)

Overview

4

 A MongoDB document is a BSON object
• BSON is effectively binary JSON - see http://bsonspec.org/
• Max document size is 16MB
• https://www.w3schools.com/js/js_json_datatypes.asp

 MongoDB documents contain fieldname/value pairs

 Miscellaneous notes:
• Field names are strings
• Each document has a special field named _id (primary key)
• MongoDB preserves the ordering of fields (_id is always first)

MongoDB Documents

5

{
 field1: value1,
 field2: value2,
 …
 fieldN: valueN
}

{
 field1: value1,
 field2: value2,
 …
 fieldN: valueN
}

 A field can be:
• Any BSON type
• An array, document, or array of documents

 Example:

 Note:
• BSON has many more standard data types than JSON
• See https://docs.mongodb.com/manual/reference/bson-types/

Field Types

6

var emp1 = {
 _id: ObjectId("21aa914e0405a59ce30a94a2"), // Unique ID for this object.
 name: { first: "Ola", last: "Nordmann" }, // Embedded document.
 dob: new Date('Jul 2, 1997'), // Date object.
 langs: ["Norwegian", "Swedish", "English"], // Array of strings.
 views: NumberLong(1250000) // 64-bit long integer.
}

var emp1 = {
 _id: ObjectId("21aa914e0405a59ce30a94a2"), // Unique ID for this object.
 name: { first: "Ola", last: "Nordmann" }, // Embedded document.
 dob: new Date('Jul 2, 1997'), // Date object.
 langs: ["Norwegian", "Swedish", "English"], // Array of strings.
 views: NumberLong(1250000) // 64-bit long integer.
}

 To access a field in a document:
• Use dot notation

 To access an element in an array:
• Use [] notation and specify a zero-based index

 Examples:

Accessing Fields in a Document

7

emp1.name // { "first" : "Ola", "last" : "Nordmann" }
emp1.name // { "first" : "Ola", "last" : "Nordmann" }

emp1.name.first // Ola
emp1.name.first // Ola

emp1.langs // ["Norwegian", "Swedish", "English"]emp1.langs // ["Norwegian", "Swedish", "English"]

emp1.langs[0] // Norwegian
emp1.langs[0] // Norwegian

 MongoDB stores documents in collections
• MongoDB collections are analogous to tables in a RDBMS

 By default, documents in a collection don't have to have
the same schema
• This is one of the attractions of NoSQL databases
• You can specify document validation rules if you like (v3.2+)

MongoDB Collections

8

 You can explicitly create a collection
• Via db.createCollection()
• Useful if you want to specify creational options

 If you don't want to set any options for a collection, you
don't need to create the collection explicitly
• Just start inserting documents into the collection
• MongoDB creates the collection if it doesn't already exist
• See next section for details

Creating a Collection

9

db.createCollection("log", {
 capped: true,
 size: 20000,
 max: 500
})

db.createCollection("log", {
 capped: true,
 size: 20000,
 max: 500
})

 Creating documents
 Reading documents
 Updating documents
 Deleting documents
 Additional useful collection operations

2. CRUD Operations

10

 To create documents in a collection, call:
• insertOne() - insert a single document into a collection
• insertMany() - insert an array of documents into a collection

 Notes:
• MongoDB creates the collection if it doesn't already exist
• MongoDB generates unique _id fields if not specified
• Documents don't have to have the same schema

Creating Documents

11

db.people.insertOne(
 { name: "Jayne", age: 52, gender: "F" }
)

db.people.insertOne(
 { name: "Jayne", age: 52, gender: "F" }
)

db.people.insertMany([
 { name: "Thomas", age: 20, gender: "M" },
 { name: "Emily", age: 20, gender: "F", favTeam: "Swans" }
])

db.people.insertMany([
 { name: "Thomas", age: 20, gender: "M" },
 { name: "Emily", age: 20, gender: "F", favTeam: "Swans" }
])

 To read documents in a collection, call:
• find() - find some or all documents in the collection

 If you call find() without any parameters, it returns all
the documents in the collection
• Analogous to SELECT * in SQL

 Example
• Find all documents in the people collection

Reading All Documents

12

db.people.find()
db.people.find()

 You can pass a query filter document into find()
• Specify the conditions that determine which documents to select
• Analogous to WHERE in SQL

 Here are some of the query operators you can use:
• $eq, $ne, $gt, $gte, $lt, $lte, $in, $nin
• $and, $or, $nor, $not
• $exists, $type
• $mod, $regex, $text, $where
• For full details about these query operators and more, see https://

docs.mongodb.com/manual/reference/operator/query/

Reading Selective Documents

13

{
 field1: value1,
 field2: { operator: value },
 …
}

{
 field1: value1,
 field2: { operator: value },
 …
}

 Explain the following queries:

Reading Selective Documents - Examples 1

14

db.people.find({
 name: 'Jayne'
})

db.people.find({
 name: 'Jayne'
})

db.people.find({
 age: { $gte: 20 }
})

db.people.find({
 age: { $gte: 20 }
})

db.people.find({
 age: { $gte: 20 },
 age: { $lte: 30 }
})

db.people.find({
 age: { $gte: 20 },
 age: { $lte: 30 }
})

db.people.find({
 $or: [
 { age: { $lt: 20 } },
 { age: { $gt: 30 } }
]
})

db.people.find({
 $or: [
 { age: { $lt: 20 } },
 { age: { $gt: 30 } }
]
})

 How about this one:

Reading Selective Documents - Examples 2

15

db.people.find({

 name: /^J/,

 gender: 'F',

 $or: [
 { age: { $lt: 20 } },
 { age: { $gt: 30 } }
]
})

db.people.find({

 name: /^J/,

 gender: 'F',

 $or: [
 { age: { $lt: 20 } },
 { age: { $gt: 30 } }
]
})

 By default, find() returns all fields in a document
• Analogous to SELECT * in SQL

 You can pass a projection document into find()
• Specify the fields to include/exclude in the result documents
• To specify fields to include, set fields to 1
• To specify fields to exclude, set fields to 0

 Note:
• The _id field is always returned, by default
• Apart from _id, you can't combine 1s and 0s in your projection

Reading Selective Fields

16

{
 fieldToInclude: 1,
 anotherFieldToInclude: 1,
 …
}

{
 fieldToInclude: 1,
 anotherFieldToInclude: 1,
 …
}

{
 fieldToExclude: 0,
 anotherFieldToExclude: 0,
 …
}

{
 fieldToExclude: 0,
 anotherFieldToExclude: 0,
 …
}

 Explain the following queries:

Reading Selective Fields - Examples

17

db.people.find(
 { name: 'Jayne' },
 { age: 1, gender: 1 }
)

db.people.find(
 { name: 'Jayne' },
 { age: 1, gender: 1 }
)

db.people.find(
 { name: 'Jayne' },
 { age: 1, gender: 1, _id: 0 }
)

db.people.find(
 { name: 'Jayne' },
 { age: 1, gender: 1, _id: 0 }
)

db.people.find(
 { name: 'Jayne' },
 { name: 0 }
)

db.people.find(
 { name: 'Jayne' },
 { name: 0 }
)

db.people.find(
 { name: 'Jayne' },
 { name: 0, _id: 0 }
)

db.people.find(
 { name: 'Jayne' },
 { name: 0, _id: 0 }
)

 To update existing documents in a collection, call:
• updateOne() - update a single document in a collection
• updateMany() - update an array of documents in a collection
• replaceOne() - replace a single document in a collection

 For updateOne() and updateMany(), pass 3 params:
• Filter, same as for find()
• Update to perform (e.g. $set, $unset, etc.)
• Options object:

 upsert - If true, will cause an insert if no matching document found
 writeConcern - Details about how to perform the "write" operation
 collation - Language-specific rules for string comparison (locale etc.)

 replaceOne() is the same, except the 2nd param is the
replacement object

Updating Documents

18

 Explain the following updates:

Updating Documents - Examples 1

19

db.people.updateOne(
 { name: 'Jayne' },
 { $set: { name: 'JAYNE', favTeam: 'Swans' } }
)

db.people.updateOne(
 { name: 'Jayne' },
 { $set: { name: 'JAYNE', favTeam: 'Swans' } }
)

db.people.updateMany(
 {},
 { $inc: { age: 1 } }
)

db.people.updateMany(
 {},
 { $inc: { age: 1 } }
)

db.people.updateMany(
 {},
 { $rename: { favTeam: 'favouriteTeam' } }
)

db.people.updateMany(
 {},
 { $rename: { favTeam: 'favouriteTeam' } }
)

db.people.updateMany(
 {},
 { $currentDate: {
 datestamp: { $type: 'date' },
 timestamp: { $type: 'timestamp' }
 }
 }
)

db.people.updateMany(
 {},
 { $currentDate: {
 datestamp: { $type: 'date' },
 timestamp: { $type: 'timestamp' }
 }
 }
)

 Explain the following replacement:

Updating Documents - Examples 2

20

db.people.replaceOne(
 { name: 'JAYNE' },
 { name: 'Jayne', age: 52, gender: 'F' }
)

db.people.replaceOne(
 { name: 'JAYNE' },
 { name: 'Jayne', age: 52, gender: 'F' }
)

 To delete documents in a collection, call:
• deleteOne() - delete a single document in a collection
• deleteMany() - delete an array of documents in a collection

 For both these methods, pass 2 params:
• Filter, same as for find()
• Options object:

 writeConcern - Details about how to perform the "write" operation
 collation - Language-specific rules for string comparison (locale etc.)

Deleting Documents

21

 Explain the following deletions:

Deleting Documents - Examples

22

db.people.deleteOne(
 { name: 'Wilfried' }
)

db.people.deleteOne(
 { name: 'Wilfried' }
)

db.people.deleteMany(
 { favouriteTeam: 'Cardiff' }
)

db.people.deleteMany(
 { favouriteTeam: 'Cardiff' }
)

db.people.deleteMany(
 { overdraft: { $exists: true } }
)

db.people.deleteMany(
 { overdraft: { $exists: true } }
)

 MongoDB has various other useful collection operations
available, including:
• aggregate()
• bulkWrite()
• count(), totalSize(), explain(), distinct(),
• createIndex(), dropIndex(), reIndex(),
• findAndModify(), findAndReplace(), findAndDelete()
• mapReduce()
• remove()

 For full details, see:
• http://docs.mongodb.com/manual/reference/method/js-collection/

Additional Useful Collection Operations

23

 Overview
 Scenario
 Aggregation framework
 Map-reduce
 Single-purpose aggregation operations

3. Aggregation Operations

24

 Aggregation operations allow you to process data records
and return computed results
• Very useful way to analyze large data sets, potentially from

multiple databases

 MongoDB has 3 ways to perform aggregation operations:
• Aggregation framework
• Map-reduce
• Single-purpose aggregation methods

 We'll explore each technique in this section

Overview

25

 To illustrate aggregate operations, we'll use the following
sample data set
• This is the data set that appears in the MongoDB docs online

Scenario

26

db.orders.insertMany([
 { cust_id: "A123", amount: 500, status: "A" },
 { cust_id: "A123", amount: 250, status: "A" },
 { cust_id: "B212", amount: 200, status: "A" },
 { cust_id: "A123", amount: 300, status: "D" }
])

db.orders.insertMany([
 { cust_id: "A123", amount: 500, status: "A" },
 { cust_id: "A123", amount: 250, status: "A" },
 { cust_id: "B212", amount: 200, status: "A" },
 { cust_id: "A123", amount: 300, status: "D" }
])

 MongoDB's aggregation framework is based on the
concept of a processing pipeline
• You pass the data through a series of operations in a pipeline
• You end up with an aggregated result

 The pipeline typically includes operations such as:
• Filter the records, to keep just the ones we're interested in
• Perform a transformation operation on remaining records
• Perform a sort, or calculate an average value, etc. etc.

 The aggregation framework is the preferred way to do
data aggregation in MongoDB
• Efficient, because it uses native operations within MongoDB

Aggregation Framework (1 of 2)

27

 This example has two stages:
• $match stage
• $group stage

 For details, see:
• https://docs.mongodb.com/manual/core/aggregation-pipeline/

Aggregation Framework (2 of 2)

28

db.orders.aggregate([
 { $match: { status: "A" } },
 { $group: { _id: "$cust_id", total: { $sum: "$amount" } } }
])

db.orders.aggregate([
 { $match: { status: "A" } },
 { $group: { _id: "$cust_id", total: { $sum: "$amount" } } }
])

{ "_id" : "B212", "total" : 200 }
{ "_id" : "A123", "total" : 750 }

{ "_id" : "B212", "total" : 200 }
{ "_id" : "A123", "total" : 750 }

 MongoDB provides map-reduce operations…

 Phase 1 is a "map" stage
• Processes each document and emits a transformed result

 Phase 2 is a "reduce" stage
• Combines the output of the map operation

 Optionally, map-reduce can have a finalize stage
• Makes final modifications on the result

 Map-reduce uses JavaScript functions
• Slower than the native ops in the aggregation framework
• But more flexible

Map-Reduce (1 of 2)

29

 This example is equivalent to the aggregation framework
example earlier

Map-Reduce (2 of 2)

30

db.orders.mapReduce(

 function() { emit(this.cust_id, this.amount); }, // Map op on each document.

 function(key, values) { return Array.sum(values) }, // Reduce operation.

 {
 query: { status: "A" }, // Query (we only want records with status "A").
 out: "order_totals" // Output table (will contain the final results).
 }
)

db.orders.mapReduce(

 function() { emit(this.cust_id, this.amount); }, // Map op on each document.

 function(key, values) { return Array.sum(values) }, // Reduce operation.

 {
 query: { status: "A" }, // Query (we only want records with status "A").
 out: "order_totals" // Output table (will contain the final results).
 }
)

{ "_id" : "A123", "value" : 750 }
{ "_id" : "B212", "value" : 200 }

{ "_id" : "A123", "value" : 750 }
{ "_id" : "B212", "value" : 200 }

db.order_totals.find()
db.order_totals.find()

 MongoDB provides various single-purpose aggregation
operations in db.collection, such as:

 For details, see:
• https://docs.mongodb.com/manual/reference/method/js-collection/

Single-Purpose Aggregation Operations

31

db.orders.distinct("cust_id")
db.orders.distinct("cust_id")

["A123", "B212"]
["A123", "B212"]

db.orders.count()
db.orders.count()

4
4

32

Any Questions?

